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Abstract—We introduce a framework for evaluating human
detectors that considers the practical application of a detctor
on a full image using multi-size sliding window scanning. We
produce DET (Detection Error Tradeoff) curves relating miss
detection rate and false alarm rate computed by deploying th
detector on cropped windows as well as whole images, using in
the later either image resize or feature resize. Plots for ccade
classifiers are generated based on confidence scores insteafd
varying the number of layers. To assess a method’s overall
performance on a given test, we use the ALMR (Average Log Miss
Rate) as an aggregate performance score. To analyze the sifin
cance of the obtained results, we conduct 10-fold cross vehtion
experiments. We applied our evaluation framework to two stée
of the art cascade-based detectors on the standard INRIA Pson
dataset, as well as a local dataset of near infrared images. &V
used our evaluation framework to study the differences betwen
the two detectors on the two datasets with different evaluabn
methods. Our results show the utility of our framework. They
also suggest that the descriptors used to represent featiseand
the training window size are more important in predicting the
detection performance than the nature of the imaging proces
and that the choice between resizing images or features has
serious consequences.

Index Terms—Human Detection, Cascade, Evaluation, Near
Infrared, HOG, Region Covariance

I. INTRODUCTION

UMAN detection is one of the most challenging tasks
in computer vision with a long list of fundamental

applications from intelligent vehicles and video sunagilte

Paper)

cropped to have the human subjects centered in them, and
resized to match the window size used in training. However, a
the other end, detectors are applied to whole images, tfpica
using a multiple-size sliding-window approach, which fesu
in probe windows that are far from being ideal. Second, most
of the evaluations are performed on a single dataset, which
leaves practitioners with uncertainty about the detecgien
formance on other datasets, possibly with different mdigali
or the significance of one detector’s advantage over the.othe
Third, for detectors based on cascade classifiers, typicall
performance plots are created by changing the number of
cascade layers. This techniqgue sometimes leads to difficult
in comparing different methods when the resulting plots do
not cover the same range of false alarm rates.

The main contribution of this paper is an evaluation frame-
work that handles the shortcomings of the existing evadnati
The main features of our evaluation are:

« Comparing between evaluation on cropped windows and

evaluation on whole images to get a better prediction for

a detector’s performance in practice and how it differs

from ideal settings.

Using 10-fold cross validation to be able to study the

significance of the obtained results.

o Plotting DET curves based on confidence scores for
detectors based on cascade classifier instead of plotting
them based on varying the number of layers.

to interactive environments. Unlike other detection peot,
there exist significant appearance changes due to the pose
variations and articulated body motion of humans, even for*
the same person. People, as a general class, dress iniffere
colors and styles of clothing, carry bags, and hide behind
umbrellas. They move together and occlude each other.
Despite these challenges, there has been a significant ad-
vancement in this area of research recently. Neverthdites,
attention has been given to evaluation of detectors fortjoac
applications. First, there is a notable mismatch between th
way detectors are evaluated and the way they are applied
in real world applications, such as smart vehicle systents. A

Introducing an aggregate performance score and using it
as the main metric to statistically compare methods.
Comparing between building a multi-size image pyramid
while fixing the scanning window size, and using a single
image size and changing the scanning window size, when
applying the detector on whole images. We refer to these
two choices asresizing imagesand resizing features
respectively. This is an example of an implementation
choice that can have a significant effect on the detection
performance depending on the evaluated detector.
Evaluation on near infrared images as well as visible
images.

one end, detectors are evaluated on "ideal” windows that areThe goal of our study is not to provide a performance

Manuscript received February 8, 2008. This work was suppory
Mitsubishi Electric Research Laboratories, Cambridge,, NUSA.

Mohamed Hussein and Larry Davis are with the Department ah-Co
puter Science, University of Maryland, College Park, MD 2P7 (emails:
{mhussein,Isfi@cs.umd.edu)

Fatih Porikli is with Mitsubishi Electric Research Labs, mlaridge, MA
02139. (email: fatih@merl.com)

comparison for the state of the art human detection teclesiqu
Instead, our goal is to introduce a comprehensive evaluatio
framework and to highlight the mismatch between the typical
evaluation techniques and the practical deployment of the
detectors. We utilized the two detectors in [1] and [2] to
demonstrate our evaluation framework. To the best of our
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knowledge, these are the best performing human detectadaptive to changes, local receptive fields (LRF) features a
based on rejection cascades. We focus on rejection cascasldgacted from silhouettes using multi-layer perceptrogs
because they are appealing for practical applicationsxas eeans of their hidden layer [13], and then are provided to
plained in Section Ill. Despite that our presentation f@susa support vector machine (SVM). In [14], a polynomial SVM
on human detection, our framework and observations applywas learned using Haar wavelets as human descriptors,, Later
other objects as well. the work was extended to multiple classifiers trained toatete
Our experimental results show the utility of our frameworkuman parts, and the responses inside the detection window
in understanding the performance of a human detector ane combined to give the final decision [15]. In [16], human
practice. They suggest that the descriptors used to rapreggarts were represented by co-occurrences of local orientat
features, Histograms of Oriented Gradients or Region Cteatures and separate detectors were trained for eachgiegt u
variances in our study, and the size of the training windowdaBoost. Human location was determined by maximizing the
are more important in predicting the detection performangaint likelihood of part occurrences combined accordinghe
than the nature of the imaging process, such as the imaggdmetric relations.
electromagnetic band. They also show that the choice betweeln [17], local appearance features and their geometric rela
resizing images or features can have a significant impact wons are combined with global cues by top-down segmemtatio
the performance depending on the used descriptor. based on per pixel likelihoods. In [18], an SVM classifier,
The paper is organized as follows. Section Il gives a brigiat was shown to have false positive rates of at least one-
overview of human detection techniques. In Section Ill, wevo orders of magnitude lower at the same detection rates
briefly describe the two pedestrian detectors used in oduevahan the conventional approaches, was trained using densel
ation. In Section IV, we explain the elements of our evahrati sampled histograms of oriented gradients (HOG) inside the
framework. In Section V, we introduce the two datasets we ugetection window. This approach was extended to optionally
and how we prepared them for the experiments. In Section \agcount for motion by extending the histograms to include
we present the results and analysis of our evaluation. Iiginaflow information in [19]. More recently, it was also applies t
the conclusion is given in Section VII. deformable part models as in [20] and [21]. A near real time
system was built based on it using a cascade model in [22].
Cascade models have also been successfully used with other
types of features, such as the edgelet features [23], th®Reg
Human detection methods can be categorized into tv@pvariance [2], the shapelet features [24], or heterogenou
groups based on the camera setup. For static camera setfgagures [25].
object motion is considered as the distinctive feature. A
motion detector, either a background subtraction or an énag I1l. EVALUATED DETECTORS
segmentlanon ”.‘eth"d’ IS ap-phed FO the 'T‘p.“t video to ekirac The two human detectors which we use in our evaluation
the moving regions and the|r mo'uqn statistics [3] [4]. Alrea%r—‘e based on a rejection cascade of boosted feature regions.
time moving human detection algorithm that uses Haar wave

q ot racted f i ) gif ey differ in how they describe the feature regions and in
escriptors extracted Irom space-time Image dierencas W, ., 'ihe weak classifiers are trained. One detector uses Regio

](cjescnl?je_f(: n [S]f. Utsmg AdaBOOTt’ ;[hg modst d'i(_:r:m'fna?vaovariance to describe feature regions and uses clagsificat
rame driierence tealures were selected, and mulliplalleat o, pie mannian manifolds for the weak classifiers [2]. Werrefe
were combined to form a strong classifier. A rejection casca this detector as COV. The other detector uses Histograms

that ‘.S constructed_by strong cla_tssifiers to efficien_tly crejeof Oriented Gradients (HOG) to describe feature regions and
negative examples is adopted to improve the detection spe&gl

. : ; ; es conventional linear classification [1]. We refer tcs thi
A shortcoming of the motion based algorithms is that thely fadle [1]

to0 detect stati destri In addit h metiaoe tector as HOG. For the sake of completeness, we briefly
0 detect stationary pedestrians. in adaition, such m describe here the notion of a rejection cascade of boosted
highly sensitive to view-point and illumination changes.

Th d cat ¢ thods is based et t]‘eature regions, as well as the descriptors used by the two
€ second category of methods 1S based on deleCtlifqqifiars The reader is referred to the original papers fo

human appearance and silhouette, either applying a clssi ore details.

at all possible subwindows in the given image, or assembling

local human parts [6]-[10] according to geometric conatsai o )

to form the final human model. A classic appearance basBd Rejection Cascade of Boosted Feature Regions

approach is template matching, as in [11] and [12]. In this Rejection cascades of boosted feature regions were pepular
approach, a hierarchy of human body templates is built tred by their success in the area of face detection [26]. They
efficiently be matched to the edge map of an input inmare based on two main concepisiosted feature regiongand
age via distance transform. Template matching is prone rgjection cascades

producing false alarms in heavily cluttered areas. Anotherin boosting [27], astrong classifieris built by combining
popular appearance based method is the principal comporeemumber ofweak classifiers Boosting feature regionscan
analysis (PCA) that projects given images onto a compdm understood as combining simple feature regions to build
subspace. While providing visually coherent represemtati a strong representation of the object that can be used to
PCA tends to be easily affected by the variations in poskstinguish the object from other stuff. Feature regionstum

and illumination conditions. To make the representatiomenocase are rectangular subregions frémature mapsof input

II. HUMAN DETECTION
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F(z,y) = o1, 2,y) 1)
where the functiord can be any mapping such as intensity,
color, gradients, filter responses, etc. For a given reciang
region R C F, let {z;};—1..s be thed-dimensional feature
points insideR. The regionR is represented with thé x d
covariance matrix of the feature points
18
o L o T
Cr= 51 ;(Zz 1) (zi — ) (2
wherey is the mean of the points.
d For the human detection problem, the mapp®d, z, y)

Fig. 1: Shaded rectangular subregions of the detectionawin i
are possible features to be combined to build stronger bdost defined as

features. 1"

|:,T y || |1yl I%—i—]; [Lpw| | Tyyl arctanm 3)
y

QO T Ty Ty 5 1T, wherex andy represent pixel locatior,, I, .. are intensity
I derivatives, and the last term is the edge orientation. \ith
v i definition, the input image is mapped tada= 8 dimensional

’ ’ feature map. The covariance descriptor of a region i8 ar8
Fig. 2. A rejection cascade consists of layers. A test pattematrix and due to symmetry only the upper triangular part
is examined by layers in the cascade from left to right uni# stored, which has only 36 different values. To make the
being rejected. A pattern is accepted if all layers accept it descriptor invariant to local illumination changes, thersand
the columns of a subregion’s covariance matrix are divided b
the corresponding diagonal elements in the entire detectio
images, as shown in figure 1. The concept of a feature mapiimdow’s covariance matrix.
explained in section Il1-B. Region covariances can be computed efficientlyDifi?)

A rejection cascades built of a number of classification computations, regardless of the region size, using integra
layers. As shown in figure 2, a test pattern is examined Ibystograms [29] [28]. Covariance matrices, and hence regio
layers of the cascade one after another until it is rejectedvariance descriptors, do not form an Euclidean vectarespa
by one of them, or until it is accepted by the final layeiiowever, since covariance matrices are positive definiteima
in which case it is classified as a positive example. Duringes, they lie on a connected Riemannian manifold. Therefore
training of the cascade, the first layer is trained on allfh@si classification on Riemannian manifolds is more approptiate
examples and a random sample of negatives examples. Ebehused with these descriptors [2].
subsequent layer is trained on all positive examples and the . ]
false positives of the preceding layers. In this way, ea& Histograms of Oriented Gradients
layer handles harder negative examples than all the pmegedi Histograms of Oriented Gradients were first applied to
layers. The benefit of this mechanism is two fold. One isuman detection in [30], which achieved a significant im-
the possibility of using a huge number of negative examplpsovement over other features used for human detection at
in training the classifier, which is not possible in traininghat time. Histograms of Oriented Gradients were used in a
a traditional single layer classifier. The other is that,imiyir rejection cascade of boosted feature regions framework]in [
testing, most negative examples are rejected quickly by tledeliver comparable performance to [30] at a much higher
initial layers of the cascade and only hard ones are handiggkeed.
by the later layers. Since in our applications, it is likehat To compute the Histogram of Oriented Gradients descriptor
most of the examined patterns are negative, rejection dascaof a region, the region is divided inté cells, in a2 x 2
are computationally efficient since they quickly rejectyeadayout. A9 bin histogram is built for each cell. Histogram bins
negative examples while spending more time on the hatdrrespond to different gradient orientation directidnstead
negative or the positive examples. In our implementatiache of just counting the number of pixels with a specific gradient
cascade layer is trained using the LogitBoost algorithnj.[270rientation in each bin, gradient magnitudes at the desigha
pixels are accumulated. Bilinear interpolation is usedvieen
orientation bins of the histogram and spatially among 4he
cells. The four histograms are then concatenated to make a

Region covariances were first introduced as descriptorsdimensional feature vector, which is then normalized. In ou
[28] and then used for human detection [2], which outpeimplementation, we usé&., normalization for HOG features.
formed other state of the art classifiers. Llebe alV x H Like Region Covariance descriptors, HOG descriptors can
one-dimensional intensity or a three-dimensional colaadey be computed fast using integral histograms. Bilinear pder
and F' be aW x H x d dimensional feature map extractedation among cells is computed fast using the kernel infegra
from I images approach [31].

B. Region Covariances
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1©° INRIA 126664 alarm rates to cover. Figure 7 shows the same results of
: R B - e-HOG - Cropped . . -
g, -4-HOG - Whole-R | Figure 3 using conflde.nce scores. _
Bk YN o Cov - Cropped In our |mp!e_mentat|on, each layer of the cascad.e is a
i :::emom "t %:“ @a, | = COV-WholeRF|| _boosted c_Iassmer. The real-valued outcome_qf suc_:h a filxrssi
. T ST ; , is proportional to the number of weak classifiers in it. Hence
2 om g S ‘ we normalize this outcome by the number of weak classifiers
= “he ::5555': to produce the layer's score in the range6, 6). Then this
w0 ; o i‘AAAAZ O‘b‘:;{s‘:.f“,, ] value is mapped to the range, 1) using the sigmoid function
ot exp(a)/ (exp(x) + exp(~)).
3 ° q
P0* 10 10° 107 W B. Evaluation on Whole Images

False Alarm Rate

Evaluation on cropped windows is an optimistic estimate
of the detector’s performance in practice. Typically, d&tes
are applied to whole images using a multiple-size sliding
window scanning. The windows fed to the classifier in this
case can rarely have humans centered in them or have the
proper size, which would yield a lower performance than in

In most recent studies on human detection, evaluatigfie case of application on cropped windows. We evaluated
results are presented in DET (Detection Error Tradeoffyesy the classifiers on both cropped windows and whole images to
which relate the false alarm rate per window to the miss rag@mpare between them. In the case of evaluation on cropped
of the classifier in a log-log scale plot. Typically, posiiv windows, the positive and negative examples are well defined
examples used in the evaluation are adjusted to have the saoever, in the case of evaluation on whole images, the
subject alignment and size used in training the classifiegstuation is different. In this case, scanned windows ateatio
and negative examples are human-free. In this section, perfect positive or negative examples since they may contai
identify several shortcomings of this evaluation approa®d parts of humans or full humans who are not in the proper
explain how we address these shortcomings in our evaluatiggation or relative size. In many applications, if the diten
framework. window is slightly shifted, or slightly smaller or largerah
the subject, it is still useful. Therefore, we should notgider
such windows as negative examples and penalize the classifie
for classifying them as positives. However, if we considér a
fanned windows that are close to a human subject as positive
x%mples we will be penalizing the classifier for missing an
' them although detecting just one is good enough in practic
Based on these considerations, in the case of evaluation on
whole images, we consider any scanned window that is sig-
ﬁcantly far from all annotated human subjects in the image

Fig. 3: DET-Layer plots for the INRIA dataset with window
size 128 x 64.

IV. EVALUATION FRAMEWORK

A. Score Plots for Cascade Classifiers

Typically, points on DET curves of cascade classifiers a
generated by changing the number of cascade layers.
problem with this approach is that the generated plots are
guaranteed to cover a particular range for either the hoté@o
or the vertical axes, which makes it hard to compare differen
methods. Figure 3 shows examples of such plots. To overcop
this problem, in our evaluation, we compute a confidenceesc s a negative example. A missed detection is counted if an
for each sample and generate the plots based on these SCOlfitotated human subject is significantly far from all scanne
We assume that each layer of t.he cascade can give aconﬂd%ﬁ%ows that are classified as positives by the classifier. In
scorep(x) € (0,1) to any given example. The overall other words, a missed detection is counted if all scanned
confidence score over am layer cascade can be e‘>(‘:)r(3‘55(3\5§i/|ndows that are close enough to an annotated human subject
as are classified as negatives. The measure of closeness we use i

the overlap ratia Let |R| be the area of a regioR. Consider
(x) = N(X) + @i (x) , (4) two regionsR; and R;. The overlap ratio between them is

where \/(x) is the number of layers that acceptedand defined as
i1(X) is the confidence score of the last layer that examined
| . i |R1 U R2|
it. The score in 4 reflects the way a cascade classifier works. O(Ry,Re) = ———— .
It gives higher scores to examples that reach deeper in the [ Ry N Ry
cascade. If two examples leave the cascade at the same@&his ratio is minimum {) when the two regions are
layer, their confidence scores will differ by the confidencgerfectly aligned and is maximunmx{) when they have no
scores assigned by the last layer. In this way, we get a reakrlap. In our evaluation, we consider a scan window negati
valued score. We can create DET curves from these scoifeits overlap ratio to the closest annotated human subgct i
by changing the threshold above which a test example above 16. We count a miss detection if all scanned windows
considered positive. At each point on the curve, we set thdthin overlap ratio of 2 around an annotated human subject
threshold appropriately to generate a specific level ofefalare all classified as negatives. The latter threshold is the
alarm rate. Then, we measure the miss rate at this threshsdane used in the Pascal challenge [32]. According to these
value. In this way, we have control over the range of falgbresholds, there are windows that are not counted as \Essiti

()
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nor as negatives. The upper threshold is rather conseevativ the difference between them over the entire curve. The log-
that we do not consider a window negative unless it is tdog plots emphasize the relative difference instead of the
far from all annotated human subjects. For assigning scomdssolute difference between two curves. We need a score that
to windows, negative windows’ scores are computed as in dmphasizes the same difference in order to be consistemt wit
and, each annotated human subject is assigned the maxinthendifference perceived from the plots. For two cureesnd

score over all positive windows associated with it. b, such a score can be expressed as
Another option to present the performance on whole im- .
ages would be to use PR (Precision Recall) curves. It was 1 mri + €
g ( ) Ry =~ 3 log “ (6)

shown [33] that PR and ROC curves are closely related in the
sense that the dominant curve in one is the dominant curve

in the other if they are generated using the same points. Wewheremr is a miss rate value; is a small regularization

preferred using DET curves, which are the loglog version ggnstant, and the sum IS over the points of thi DET curve.
ROC curves, so that the the performance on whole images use 10 as the logarithmic base and= 1.0 _nour
be compared to that on cropped windows in our results aﬁépenm_ents. we founo! the valge of _n_ot s_lg_nlfu_:ant n
other published results. Also, to generate a PR plot, near‘fbﬁf"parmg curves. If this score is p05|_t|ve, it indicateatth
detection windows have to be consolidated. First, we setecCUNVE @ MISSES MOTe on average, and vice versa. -
not to confound the detector's performance by a particularInStead of having a score for each pair of curves, it is better
choice of this post processing step. Second, in our framewo have_ a score for each curve _and compare the curves by
consolidation will have to be applied at each point of tha’plocomparmg the scores. The scaiein 6 can be expressed as
which is prohibitively expensive. | . .

1) Resizing Images vs. Resizing FeaturAs: implementa- 1 1
tion)choice fc?r eva?uation on wholge images turnz out to have ftab = ZlOg (mri +¢) = n ZlOg (mri +¢) . ()
a strong effect on the detection performance. We train each =t =t
classifier on single size images. In the case of applying them! NS suggests that we can represent the performance of
on whole images, which contain humans of different size8aCh curve as the average of the logarithm of the miss rate
we have two options. One is to resize the images so inglues over the curve. Bqt, this score will be al\_/vays nggatlv
our scanning window size becomes the same as the trainiifigrefore, we switch its sign to reach the following expi@ss
size. We refer to this option aesizing imagesThe other fof the ALMR (Average Log Miss Rate) score
option is to resize the features selected by the classifidewh 1 &
maintaining their relative sizes to the scan window. We refe ALMR = — Z1og (mr; +¢) . (8)
to this option agesizing featuresResizing features is faster [

since the preprocessing of the imagg, computing gradients e higher the value of the ALMR score, the lower the miss

and integral histograms, is performed only once. We evatliatate over the curve on average; the better. The ALMR score
on whole images using the two options to compare betwegfelated to theR score in 6 and 7 by

them.

b
P mr; +€

C. Statistical Analysis Rap = ALMERy = ALM Ra . ©)

Statistical analysis of detection performance is rarelg-co 1he ALMR is related to the geometric mean of the miss
ducted for human detection, possibly due to the long traginifiate values. It is also proportional to the area under theecur
time. To our knowledge, the only study that provided stagt In the log-log domain when the curve is approximated using
analysis was [13], where a confidence interval for each pofStaircase plot. Since our plots are on a log-log scale and th
on the ROC curve was computed based on 6 observati®dnts are uniformly spaced, the ALMR score contains more
(3 training setsx 2 testing sets). We found it confusing tosgmplgs from the Ipw _false alarm rate vglues. Thls_ is useful
plot confidence intervals with the plots since in our evdarat Since in many applications we are more interested in the low
plots intersect and come close to one another. Instead, {@#se alarm rate range. .
compute confidence intervals for the aggregate performancé inally, in our evaluation, we call the difference between
score ALMR, which is explained in Section IV-D. We conduct’® ALMR scores of two experimentsignificantwhen the
a 10-fold cross validation for all our experiments. Therefo confidence intervals of the two experiments do not overlap.
for each experiment, we obtain 10 different curves. EackieeurOtherwise, we call the difference insignificant.
yields an ALMR score. To compare different experiments, we
plot the average curve for each experiment. We also present V. EVALUATION DATASETS
a box-plot for the mean, confidence interval, and range ofWe evaluated the detectors on two different datasets, INRIA
the ALMR scores for all experiments in a separate ploRerson and MERL-NIR. The INRIA dataset was introduced
Confidence intervals are computed at @5 confidence level. in [30], and subsequently used to evaluate many human

detectors. The MERL-NIR dataset consists of 46000 frames
D. Computing an Aggregated Performance Score from a video sequence. The video was shot from a vehicle

To analyze the significance of one method’s advantagmuring an Asian city, using a near infrared interlaced came

over another, we need an aggregated score that captl¥esm the frames that contained annotated human subjects, we
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INRIA

MERL-NIR

Electromagnetic Band

Visible

Near Infrared

Source of Images

Personal Photos

Interlaced Video Frames

Total Number of Im-

ages 2572 46000
Image Size Variable 720480
Number of Images

Containing Humans 901 9823
Number of Human

Samples 1825 11895
Number of Tracks N/A 285
Min Person Height 48 20
Max Person Height 832 323
Mean of Person

Height 290 92.66
Standard Deviation of

Person Height 147.83 59.92
Median Person Height 260 72
Mode Person Height 208 50

TABLE I: A comparison between the two datasets used
our evaluation. Tracks are defined only in the case of MERI
NIR dataset. A track is a sequence of windows containir

MERL-NIR Dataset

INRIA Dataset

w
S
S

[ )
5 o 8 9
g 8 g8 g
s 8 8 8

Number of Samples
Number of Samples

a
2
s

=3

100 150 200 250 300 350

Human Height in Pixels

200 0 1000 0 50

400 600 80
Human Height in Pixels

(a) INRIA Dataset (b) MERL-NIR Dataset

Fig. 4: Distribution of human height in pixels in the two
datasets used in our evaluation.

the same person in consecutive frames. More than one track .
can be associated with one person if she becomes partially=é#- 5: Sample whole and cropped human images from the
totally occluded and then fully visible again.

INRIA MERL-NIR
Whole Cropped Whole Cropped

Set#1 179 730 320 766

Set # 2 180 730 320 764

Positive  Set # 3 180 730 320 764

Set# 4 181 730 320 764

Set#5 181 730 320 764
. Training 1218 800
Negatve  pogting 453 300

INRIA-Person dataset.

V1. EVALUATION RESULTS

We train the cascade classifiers to have 30 cascade layers.
Each layer is trained using the LogitBoost algorithm [27],
and adjusted to produd®.8% detection rate an@5% false
alarm rate, using the algorithm in [26]. The number of pugsiti
samples in each training session can be inferred from table |
by noting that we use three positive sets for training and the
remaining two for testing in a 10-fold cross validation getu

TABLE II: Division of each dataset into 5 positive subsetdhe number of negative samples collected for each layer is
and two common negative sets for 10-fold cross validatigi¢t t03.5 times the number of positive samples. Features are

experiments.

generated with the minimum side length setltb5% of the
corresponding window side length, with a minimum of 8 pixels
in order to have enough sample points to construct histogrram

uniformly sampled 1600 to be used as positive images. From
the remaining frames, we randomly sampled 1100 to be used

as negative images. The description of the two datasetg alc
with statistics and histograms of human sizes are givenin 1
ble | and Figure 4. Sample whole images and cropped hun
windows used in training and testing are shown in Figure
and Figure 6. To conduct cross validation experiments, v
divided the whole positive images in each dataset into 5 si

of a roughly equal number of annotated human subjects. Ve

perform 10-fold cross validation by using 3 sets for tragnin
and 2 for testing in each fold. Negative images used in tngini

and testing are common in all experiments. Table |l dessrib

the contents of each set and the number of negative images In )

the two dataset. The number of cropped windows in the taiid- 6: Sample whole and cropped human images from the
includes the left-right reflection of each window.

MERL-NIR dataset.
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Fig. 7: DET-Score plots for the INRIA dataset with windowFig. 8: A box plot for the mean, confidence interval, and range
size 128 x 64. of the ALMR score for the plots in figure 7.

and covariance matrices. The feature location stride afel si Figyre 7 shows the DET score plots for this set of exper-

length increment are set to half the minimum feature SiGgents. Each curve is the average of the 10 curves produced
length. Every 5 boosting iterations, 5% of the features agg cross validation. However, the curves often intersee on
randomly sampled, with a maximum of 200. The limit oynother and there is no clear winner. Therefore, we will rely
the number of sampled features is for all descriptors to fif; the ALMR score statistics to compare experiments when it
in memory instead of being re-computed on every boostifghard to reach a conclusion by inspecting the curves.
iteration. ) . ) ) _ Figure 8 shows the statistics of the ALMR score for each
FF” evalua'Flon on thle images, each image IS _scanr_1ed Withve in figure 7. Note how comparing the mean values of the
9 window heights, starting from 75% of the training windowy \r scores of two curves matches well with how the curves
height and using an increment of 30% of the last height usgfle ,selves compare to one another on average. The difterenc
while preserving the aspect ratio of the training windowesiz between the mean scores of two curves reflects the average
The scanning stride is set to 5% of the scanning window siggtive advantage of one curve over the other in terms of
in each d!mensmn. . miss rate. For example, the mean ALMR scores for the HOG-
Our training and testing mc_)dules were run on a cluster_ @(ropped and COV-Cropped experiments are approximatély
computers, with about 60 active nodes. Each node contm% 1.4, respectively. This means, on average, the miss rate
two Intel(R) Xeon(TM) CPU 3.06GHz processors with 512KB¢ the HOG detector i90°2 ~ 1.6 times the miss rate of

cache memory and 4GB RAM. The front end and compute QR cov detector, which is consistent with how the curves
was CentOS release5. compare to one another.

i In the Irtemalrtlgerllgliqt&sds?ctlop, V\tll'? tf;]rstdprfesintt the. evalua-For evaluation on cropped windows, the ALMR score shows
lon results on the ataset wi € default trainimgia the significant advantage of the COV detector on average.

testing window size o128 x 64. Then, we present the resultsThe confidence intervals of the two scores do not overlap. On

on the MERL-NIR dataset, in which we use a window size oa{verage COV leads by arouic points. Note how the ranges

48 x 24. Alongside with fchis set of re_sults, we present resulgf the ALMR scores are large to the extent that they overlap.
for the INRIA dataset with window sizé8 x 24 for the sake his signifies the importance of using statistical analysis

of comparison with the results on the MERL-NIR dataset. \A;érarder to have a reliable estimator for a detector's perfoiaa

present all the plots using the same limits in both axes l‘ortFOr evaluation on whole images, the COV detector main
ease of comparison. In each plot, curves for the COV detec[o < its lead over the HOG detector. The lead this time is

are drawn using dotted lines and curves for the HOG detec 8" dent si h f the ALMR d
are drawn using dashed lines, with a different marker sha \é?n molre e\g ent since Ceo\r/arllge('js Ob € und sg()tres 0
for each type of experiment. The legend of each experim {t overiap. ©n average ceads by aro ponts.
has two parts. The first is the descriptor, HOG or COV. Th OWever, the_ perfprmance of the_two detectors s_,lgnlﬁcantly
second is the evaluation method, which is either Croppe ,terlorates in this case by Io_smg ar(_)uﬁd_} p0|_nts_ on
Whole-RI, or Whole-RF, for cropped windows, whole imageX'© ALMR scale on average. This deterioration signifies the

with resizing images, and whole images with resizing fezgur Importance (,)f evaluation on whole images in order t_o predict
respectively. the detector’s performance in a typical practical setting.

Finally, for evaluation on whole images with resizing fea-
) tures, the picture is totally different. Without even insfieg
A. Evaluation on INRIAL28 x 64 the ALMR score statistics, we can notice that the HOG detec-
In this set of experiments, we evaluate our two detectors tr consistently outperforms the COV detector. By inspegti
the INRIA dataset using the original window sizel® x 64, the ALMR scores, we notice that this difference is significan
where each positive window is adjusted so that the height @h average HOG outperforms COV by around points. The
the human body in it is 96 pixels. difference between the two detectors’ behavior in this case
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Fig. 9: DET-Score plots for the MERL-NIR dataset.

Fig.

1.2
Score Values

10: A box plot for the mean, confidence interval, min,

and max of the ALMR score for the plots in figure 9.

may be due to the difference between the two descriptors
or due to the usage of learning on Riemannian manifolds ir
the case of COV. Further investigation is needed to undedsta
this phenomenon. On the other hand, comparing evaluation o
whole images for the HOG detector with resizing images anc
with resizing features, we find the difference between themrr
insignificant. The mean score of each experiment lies in the
confidence interval of the other. This gives the HOG detectol
a higher advantage over COV in terms of processing time
The COV detector is at least 10 times slower than the HOC
detector. Resizing features saves about 40% of the progessi
time of the HOG detector without a significant loss in detatti
performance. This makes the COV detector at least about
times slower than the HOG detector when resizing feature
used for the latter.

INRIA 48x24
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Despite the advantage of the COV detector in most of the

experiments on average, it is worth noting that the HOSB
detector often slightly outperforms the COV detector in th
very low false alarm rate range, below arouiid*. However,
the points in this range of false alarm rates are often foungl o
in the score-based plots and missing from the layer-basesd pl
(compare figure 7 to figure 3). This may indicate the possjbili
of obtaining a more consistent advantage for the COV detec,
if we continue training more cascade layers to cover theent
range of false alarm rate. However, this is difficult in preet
It takes about 4 days to train a COV classifier for 30 layer:
The bottleneck of the training process is finding enough mi
classified negative samples for each new layer to be train
and this time increases with the number of layers.

e

B. Evaluation on MERL-NIR

10

-5

1 1
10 2
False Alarm Rate

107

Fll% 11: DET-Score plots for the INRIA dataset with window
Si2e 48 x 24.

ver the HOG detector in the case of cropped windows and
whole images with resizing images, and the HOG detector’s
lead in the case of whole images with resizing features are
significant. However, there are several differences beiiee

two sets of results. The first notable difference is the inapdo
Poerformance for both detectors in the case of resizing featu
with respect to the other types of evaluation. In the case of
HOG, using resizing features became even better thanmgsizi
images. The second notable difference is that the advantage
3f evaluation on cropped windows over evaluation on whole
ﬁﬁages with resizing images is no longer significant, with
%verlapping confidence intervals of the ALMR scores, and is
reversed in the case of the HOG detector.

Before attempting to explain these differences, we present

another set of results on the INRIA dataset, but, with the

In this set of experiments, we evaluate our two detectonsndow size reduced to match the one used with MERL-NIR.

on the MERL-NIR dataset. Due to the smaller person heights this set of experiments, all the INRIA dataset images used
in this dataset compared to the INRIA dataset, as showniitraining and testing are reduced in size with the samefact
figure 4, we have to use the reduced window sizd®k 24 that reduces the window size 828 x 64 to 48 x 24. Figures 11
in this set of experiments. All positive windows are adjdsteand 12 show the results of this set of experiments. Comparing
so that the height of the human body is 36 pixels. Becautgs set of results with those obtained on the MERL-NIR
of this reduction in window size, we expect reduced detectialataset, by comparing Figure 12 to Figure 10, we find that
performance. they are very similar. Most of the differences between them
Figures 9 and 10 show the DET plots and ALMR scorare either small or statistically insignificant. This ohsion
statistics for this set of experiments. Similar to the resulgives us a clue about the differences between the resultseon t
on the INRIA 128 x 64 dataset, the COV detector's leadNRIA 128 x 64 dataset and those on the MERL-NIR dataset.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS/OL. 10, NO. 3, SEP 2009 9

ALMR - INRIA 48x24
T

of comparison. We used 10-fold cross validation to statdiy

COV - Whole-RF| HIF 1 analyze our results.
Our experiments showed the effectiveness of our framework
HOG ~WholeTRe! HI ] and led to the following findings:
cov - whole-RIF HTH 1 o The COV detector maintains a significant lead over the
HOG detector on average. However, sometimes it is very
HOG - Whole-RIr i | close or slightly inferior in the very low false alarm rate
cov— Cropped: , I - | range, qnd it is at least 17 times slqwer. _
« Application of detectors on whole images can yield a
HOG - Cropped FETF-4 1 significant reduction in detection performance than what
06 08 1 12 14 16 18 can be observed upon evaluation on cropped windows.

Score Values

However, when the application deploys a dense scanning

Fig. 12: A box plot for the mean, confidence interval, min, in terms of strides and window sizes, the difference

and max of the ALMR score for the plots in figure 11. between them may not be significant.
« Detection performance may not be significantly affected

by applying the same algorithm to images in the near

It tells us that the difference is mostly due to the windovesiz ~ infrared band instead of the visible band. However, it is
The reduced window size leads to a reduced stride when significantly affected by the window size used in training
scanning whole images for evaluation since we set the stride the classifiers.
to be 5% of the window side length. That makes the strides Whether to use resizing images, or resizing features,
just 1 or 2 pixels in each dimension for4® x 24 window. when applying a detector to whole images, can have a
Also, using a reduced minimum scanning size results in a Significant effect on the detection performance depending
reduced scanning size range and hence a denser coverage©n the detector used. While the HOG detector can deliver
of that range. These two factors could explain the reduction the same or better performance when resizing features,
in the performance gap between the evaluation on cropped the COV detector delivers significantly deteriorated per-
windows and evaluation on whole images. With reduced formance.
window sizes and window size range, there is a higher chancéMany directions can be taken for future extensions and en-
that the scanning window becomes close to annotated huntemcements of our framework. It is not clear how the extended
subjects while having them centered. Also, with a small@iots we obtain for cascade classifiers using confidencescor
range of scanning window sizes, the effect of resizing feare comparable to plots obtained by increasing the number
tures compared to resizing images should be less significaoft layers in the cascades. The ALMR aggregate confidence
Nevertheless, the enhanced performance of resizing featuscore gives an overall performance measure assuming that
compared to resizing images in the case of HOG needs furtiperformance over the entire range of the false alarm rate is
investigation. important. An investigation of using a weighted or limited-
Finally, by comparing the ALMR scores in the case ofange version of the score for some applications can be lusefu
evaluation on cropped images when using a large scan witemparison to PR curves and what we learn from both DET
dow size, Figure 8, versus using a small scan window siznd PR curves on evaluation on whole images needs to be
Figures 10 and 12, we observe that the performance on snfafther studied. Finally, the framework in general needbdo
window sizes is significantly worse. Note that evaluation oapplied to other state of the art detectors, especially s
cropped windows actually evaluates the classifier, not halo not rely on cascade classifiers.
it is used in the detection task. A classifier trained on a
large window size has a richer set of features to select from. ACKNOWLEDGMENT

Therefore, it is expected to perform better, as the resbi®s  The authors would like to deeply thank Janet McAndless for
taking over the tedious job of creating ground truth anrioiet
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