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Abstract—We introduce a framework for evaluating human
detectors that considers the practical application of a detector
on a full image using multi-size sliding window scanning. We
produce DET (Detection Error Tradeoff) curves relating miss
detection rate and false alarm rate computed by deploying the
detector on cropped windows as well as whole images, using in
the later either image resize or feature resize. Plots for cascade
classifiers are generated based on confidence scores insteadof
varying the number of layers. To assess a method’s overall
performance on a given test, we use the ALMR (Average Log Miss
Rate) as an aggregate performance score. To analyze the signifi-
cance of the obtained results, we conduct 10-fold cross validation
experiments. We applied our evaluation framework to two state
of the art cascade-based detectors on the standard INRIA Person
dataset, as well as a local dataset of near infrared images. We
used our evaluation framework to study the differences between
the two detectors on the two datasets with different evaluation
methods. Our results show the utility of our framework. They
also suggest that the descriptors used to represent features, and
the training window size are more important in predicting the
detection performance than the nature of the imaging process,
and that the choice between resizing images or features has
serious consequences.

Index Terms—Human Detection, Cascade, Evaluation, Near
Infrared, HOG, Region Covariance

I. I NTRODUCTION

H UMAN detection is one of the most challenging tasks
in computer vision with a long list of fundamental

applications from intelligent vehicles and video surveillance
to interactive environments. Unlike other detection problems,
there exist significant appearance changes due to the pose
variations and articulated body motion of humans, even for
the same person. People, as a general class, dress in different
colors and styles of clothing, carry bags, and hide behind
umbrellas. They move together and occlude each other.

Despite these challenges, there has been a significant ad-
vancement in this area of research recently. Nevertheless,little
attention has been given to evaluation of detectors for practical
applications. First, there is a notable mismatch between the
way detectors are evaluated and the way they are applied
in real world applications, such as smart vehicle systems. At
one end, detectors are evaluated on ”ideal” windows that are
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cropped to have the human subjects centered in them, and
resized to match the window size used in training. However, at
the other end, detectors are applied to whole images, typically
using a multiple-size sliding-window approach, which results
in probe windows that are far from being ideal. Second, most
of the evaluations are performed on a single dataset, which
leaves practitioners with uncertainty about the detectionper-
formance on other datasets, possibly with different modalities,
or the significance of one detector’s advantage over the other.
Third, for detectors based on cascade classifiers, typically
performance plots are created by changing the number of
cascade layers. This technique sometimes leads to difficulty
in comparing different methods when the resulting plots do
not cover the same range of false alarm rates.

The main contribution of this paper is an evaluation frame-
work that handles the shortcomings of the existing evaluations.
The main features of our evaluation are:

• Comparing between evaluation on cropped windows and
evaluation on whole images to get a better prediction for
a detector’s performance in practice and how it differs
from ideal settings.

• Using 10-fold cross validation to be able to study the
significance of the obtained results.

• Plotting DET curves based on confidence scores for
detectors based on cascade classifier instead of plotting
them based on varying the number of layers.

• Introducing an aggregate performance score and using it
as the main metric to statistically compare methods.

• Comparing between building a multi-size image pyramid
while fixing the scanning window size, and using a single
image size and changing the scanning window size, when
applying the detector on whole images. We refer to these
two choices asresizing imagesand resizing features,
respectively. This is an example of an implementation
choice that can have a significant effect on the detection
performance depending on the evaluated detector.

• Evaluation on near infrared images as well as visible
images.

The goal of our study is not to provide a performance
comparison for the state of the art human detection techniques.
Instead, our goal is to introduce a comprehensive evaluation
framework and to highlight the mismatch between the typical
evaluation techniques and the practical deployment of the
detectors. We utilized the two detectors in [1] and [2] to
demonstrate our evaluation framework. To the best of our
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knowledge, these are the best performing human detectors
based on rejection cascades. We focus on rejection cascades
because they are appealing for practical applications, as ex-
plained in Section III. Despite that our presentation focuses
on human detection, our framework and observations apply to
other objects as well.

Our experimental results show the utility of our framework
in understanding the performance of a human detector in
practice. They suggest that the descriptors used to represent
features, Histograms of Oriented Gradients or Region Co-
variances in our study, and the size of the training window
are more important in predicting the detection performance
than the nature of the imaging process, such as the imaged
electromagnetic band. They also show that the choice between
resizing images or features can have a significant impact on
the performance depending on the used descriptor.

The paper is organized as follows. Section II gives a brief
overview of human detection techniques. In Section III, we
briefly describe the two pedestrian detectors used in our evalu-
ation. In Section IV, we explain the elements of our evaluation
framework. In Section V, we introduce the two datasets we use
and how we prepared them for the experiments. In Section VI,
we present the results and analysis of our evaluation. Finally,
the conclusion is given in Section VII.

II. H UMAN DETECTION

Human detection methods can be categorized into two
groups based on the camera setup. For static camera setups,
object motion is considered as the distinctive feature. A
motion detector, either a background subtraction or an image
segmentation method, is applied to the input video to extract
the moving regions and their motion statistics [3] [4]. A real
time moving human detection algorithm that uses Haar wavelet
descriptors extracted from space-time image differences was
described in [5]. Using AdaBoost, the most discriminative
frame difference features were selected, and multiple features
were combined to form a strong classifier. A rejection cascade
that is constructed by strong classifiers to efficiently reject
negative examples is adopted to improve the detection speed.
A shortcoming of the motion based algorithms is that they fail
to detect stationary pedestrians. In addition, such methods are
highly sensitive to view-point and illumination changes.

The second category of methods is based on detecting
human appearance and silhouette, either applying a classifier
at all possible subwindows in the given image, or assembling
local human parts [6]–[10] according to geometric constraints
to form the final human model. A classic appearance based
approach is template matching, as in [11] and [12]. In this
approach, a hierarchy of human body templates is built to
efficiently be matched to the edge map of an input im-
age via distance transform. Template matching is prone to
producing false alarms in heavily cluttered areas. Another
popular appearance based method is the principal component
analysis (PCA) that projects given images onto a compact
subspace. While providing visually coherent representations,
PCA tends to be easily affected by the variations in pose
and illumination conditions. To make the representation more

adaptive to changes, local receptive fields (LRF) features are
extracted from silhouettes using multi-layer perceptronsby
means of their hidden layer [13], and then are provided to
a support vector machine (SVM). In [14], a polynomial SVM
was learned using Haar wavelets as human descriptors. Later,
the work was extended to multiple classifiers trained to detect
human parts, and the responses inside the detection window
are combined to give the final decision [15]. In [16], human
parts were represented by co-occurrences of local orientation
features and separate detectors were trained for each part using
AdaBoost. Human location was determined by maximizing the
joint likelihood of part occurrences combined according tothe
geometric relations.

In [17], local appearance features and their geometric rela-
tions are combined with global cues by top-down segmentation
based on per pixel likelihoods. In [18], an SVM classifier,
that was shown to have false positive rates of at least one-
two orders of magnitude lower at the same detection rates
than the conventional approaches, was trained using densely
sampled histograms of oriented gradients (HOG) inside the
detection window. This approach was extended to optionally
account for motion by extending the histograms to include
flow information in [19]. More recently, it was also applied to
deformable part models as in [20] and [21]. A near real time
system was built based on it using a cascade model in [22].
Cascade models have also been successfully used with other
types of features, such as the edgelet features [23], the Region
Covariance [2], the shapelet features [24], or heterogenous
features [25].

III. E VALUATED DETECTORS

The two human detectors which we use in our evaluation
are based on a rejection cascade of boosted feature regions.
They differ in how they describe the feature regions and in
how the weak classifiers are trained. One detector uses Region
Covariance to describe feature regions and uses classification
on Riemannian manifolds for the weak classifiers [2]. We refer
to this detector as COV. The other detector uses Histograms
of Oriented Gradients (HOG) to describe feature regions and
uses conventional linear classification [1]. We refer to this
detector as HOG. For the sake of completeness, we briefly
describe here the notion of a rejection cascade of boosted
feature regions, as well as the descriptors used by the two
classifiers. The reader is referred to the original papers for
more details.

A. Rejection Cascade of Boosted Feature Regions

Rejection cascades of boosted feature regions were popular-
ized by their success in the area of face detection [26]. They
are based on two main concepts:boosted feature regions, and
rejection cascades.

In boosting [27], astrong classifieris built by combining
a number ofweak classifiers. Boosting feature regionscan
be understood as combining simple feature regions to build
a strong representation of the object that can be used to
distinguish the object from other stuff. Feature regions inour
case are rectangular subregions fromfeature mapsof input
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Fig. 1: Shaded rectangular subregions of the detection window
are possible features to be combined to build stronger boosted
features.
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Fig. 2: A rejection cascade consists of layers. A test pattern
is examined by layers in the cascade from left to right until
being rejected. A pattern is accepted if all layers accept it.

images, as shown in figure 1. The concept of a feature map is
explained in section III-B.

A rejection cascadeis built of a number of classification
layers. As shown in figure 2, a test pattern is examined by
layers of the cascade one after another until it is rejected
by one of them, or until it is accepted by the final layer,
in which case it is classified as a positive example. During
training of the cascade, the first layer is trained on all positive
examples and a random sample of negatives examples. Each
subsequent layer is trained on all positive examples and the
false positives of the preceding layers. In this way, each
layer handles harder negative examples than all the preceding
layers. The benefit of this mechanism is two fold. One is
the possibility of using a huge number of negative examples
in training the classifier, which is not possible in training
a traditional single layer classifier. The other is that, during
testing, most negative examples are rejected quickly by the
initial layers of the cascade and only hard ones are handled
by the later layers. Since in our applications, it is likely that
most of the examined patterns are negative, rejection cascades
are computationally efficient since they quickly reject easy
negative examples while spending more time on the hard
negative or the positive examples. In our implementation, each
cascade layer is trained using the LogitBoost algorithm [27].

B. Region Covariances

Region covariances were first introduced as descriptors in
[28] and then used for human detection [2], which outper-
formed other state of the art classifiers. LetI be aW × H
one-dimensional intensity or a three-dimensional color image,
and F be aW × H × d dimensional feature map extracted
from I

F (x, y) = Φ(I, x, y) (1)

where the functionΦ can be any mapping such as intensity,
color, gradients, filter responses, etc. For a given rectangular
region R ⊂ F , let {zi}i=1..S be thed-dimensional feature
points insideR. The regionR is represented with thed × d
covariance matrix of the feature points

CR =
1

S − 1

S
∑

i=1

(zi − µ)(zi − µ)T (2)

whereµ is the mean of the points.
For the human detection problem, the mappingΦ(I, x, y)

is defined as
[

x y |Ix| |Iy |
√

I2
x + I2

y |Ixx| |Iyy| arctan
|Ix|

|Iy |

]T

(3)

wherex andy represent pixel location,Ix, Ixx, .. are intensity
derivatives, and the last term is the edge orientation. Withthis
definition, the input image is mapped to ad = 8 dimensional
feature map. The covariance descriptor of a region is an8×8
matrix and due to symmetry only the upper triangular part
is stored, which has only 36 different values. To make the
descriptor invariant to local illumination changes, the rows and
the columns of a subregion’s covariance matrix are divided by
the corresponding diagonal elements in the entire detection
window’s covariance matrix.

Region covariances can be computed efficiently, inO(d2)
computations, regardless of the region size, using integral
histograms [29] [28]. Covariance matrices, and hence region
covariance descriptors, do not form an Euclidean vector space.
However, since covariance matrices are positive definite matri-
ces, they lie on a connected Riemannian manifold. Therefore,
classification on Riemannian manifolds is more appropriateto
be used with these descriptors [2].

C. Histograms of Oriented Gradients

Histograms of Oriented Gradients were first applied to
human detection in [30], which achieved a significant im-
provement over other features used for human detection at
that time. Histograms of Oriented Gradients were used in a
rejection cascade of boosted feature regions framework in [1]
to deliver comparable performance to [30] at a much higher
speed.

To compute the Histogram of Oriented Gradients descriptor
of a region, the region is divided into4 cells, in a 2 × 2
layout. A9 bin histogram is built for each cell. Histogram bins
correspond to different gradient orientation directions.Instead
of just counting the number of pixels with a specific gradient
orientation in each bin, gradient magnitudes at the designated
pixels are accumulated. Bilinear interpolation is used between
orientation bins of the histogram and spatially among the4
cells. The four histograms are then concatenated to make a36-
dimensional feature vector, which is then normalized. In our
implementation, we useL2 normalization for HOG features.

Like Region Covariance descriptors, HOG descriptors can
be computed fast using integral histograms. Bilinear interpo-
lation among cells is computed fast using the kernel integral
images approach [31].
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Fig. 3: DET-Layer plots for the INRIA dataset with window
size128 × 64.

IV. EVALUATION FRAMEWORK

In most recent studies on human detection, evaluation
results are presented in DET (Detection Error Tradeoff) curves,
which relate the false alarm rate per window to the miss rate
of the classifier in a log-log scale plot. Typically, positive
examples used in the evaluation are adjusted to have the same
subject alignment and size used in training the classifiers,
and negative examples are human-free. In this section, we
identify several shortcomings of this evaluation approach. We
explain how we address these shortcomings in our evaluation
framework.

A. Score Plots for Cascade Classifiers

Typically, points on DET curves of cascade classifiers are
generated by changing the number of cascade layers. The
problem with this approach is that the generated plots are not
guaranteed to cover a particular range for either the horizontal
or the vertical axes, which makes it hard to compare different
methods. Figure 3 shows examples of such plots. To overcome
this problem, in our evaluation, we compute a confidence score
for each sample and generate the plots based on these scores.
We assume that each layer of the cascade can give a confidence
score ϕ(x) ∈ (0, 1) to any given examplex. The overall
confidence score over ann layer cascade can be expressed
as

Φ(x) = N (x) + ϕl(x) , (4)

whereN (x) is the number of layers that acceptedx, and
ϕl(x) is the confidence score of the last layer that examined
it. The score in 4 reflects the way a cascade classifier works.
It gives higher scores to examples that reach deeper in the
cascade. If two examples leave the cascade at the same
layer, their confidence scores will differ by the confidence
scores assigned by the last layer. In this way, we get a real
valued score. We can create DET curves from these scores
by changing the threshold above which a test example is
considered positive. At each point on the curve, we set the
threshold appropriately to generate a specific level of false
alarm rate. Then, we measure the miss rate at this threshold
value. In this way, we have control over the range of false

alarm rates to cover. Figure 7 shows the same results of
Figure 3 using confidence scores.

In our implementation, each layer of the cascade is a
boosted classifier. The real-valued outcome of such a classifier
is proportional to the number of weak classifiers in it. Hence,
we normalize this outcome by the number of weak classifiers
to produce the layer’s score in the range(−6, 6). Then this
value is mapped to the range(0, 1) using the sigmoid function
exp(x)/(exp(x) + exp(−x)).

B. Evaluation on Whole Images

Evaluation on cropped windows is an optimistic estimate
of the detector’s performance in practice. Typically, detectors
are applied to whole images using a multiple-size sliding
window scanning. The windows fed to the classifier in this
case can rarely have humans centered in them or have the
proper size, which would yield a lower performance than in
the case of application on cropped windows. We evaluated
the classifiers on both cropped windows and whole images to
compare between them. In the case of evaluation on cropped
windows, the positive and negative examples are well defined.
However, in the case of evaluation on whole images, the
situation is different. In this case, scanned windows are not all
perfect positive or negative examples since they may contain
parts of humans or full humans who are not in the proper
location or relative size. In many applications, if the detection
window is slightly shifted, or slightly smaller or larger than
the subject, it is still useful. Therefore, we should not consider
such windows as negative examples and penalize the classifier
for classifying them as positives. However, if we consider all
scanned windows that are close to a human subject as positive
examples, we will be penalizing the classifier for missing any
of them although detecting just one is good enough in practice.

Based on these considerations, in the case of evaluation on
whole images, we consider any scanned window that is sig-
nificantly far from all annotated human subjects in the image
as a negative example. A missed detection is counted if an
annotated human subject is significantly far from all scanned
windows that are classified as positives by the classifier. In
other words, a missed detection is counted if all scanned
windows that are close enough to an annotated human subject
are classified as negatives. The measure of closeness we use is
the overlap ratio. Let |R| be the area of a regionR. Consider
two regionsR1 and R2. The overlap ratio between them is
defined as

O(R1, R2) =
|R1 ∪ R2|

|R1 ∩ R2|
. (5)

This ratio is minimum (1) when the two regions are
perfectly aligned and is maximum (∞) when they have no
overlap. In our evaluation, we consider a scan window negative
if its overlap ratio to the closest annotated human subject is
above 16. We count a miss detection if all scanned windows
within overlap ratio of 2 around an annotated human subject
are all classified as negatives. The latter threshold is the
same used in the Pascal challenge [32]. According to these
thresholds, there are windows that are not counted as positives
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nor as negatives. The upper threshold is rather conservative so
that we do not consider a window negative unless it is too
far from all annotated human subjects. For assigning scores
to windows, negative windows’ scores are computed as in 4;
and, each annotated human subject is assigned the maximum
score over all positive windows associated with it.

Another option to present the performance on whole im-
ages would be to use PR (Precision Recall) curves. It was
shown [33] that PR and ROC curves are closely related in the
sense that the dominant curve in one is the dominant curve
in the other if they are generated using the same points. We
preferred using DET curves, which are the loglog version of
ROC curves, so that the the performance on whole images can
be compared to that on cropped windows in our results and
other published results. Also, to generate a PR plot, nearby
detection windows have to be consolidated. First, we selected
not to confound the detector’s performance by a particular
choice of this post processing step. Second, in our framework,
consolidation will have to be applied at each point of the plot,
which is prohibitively expensive.

1) Resizing Images vs. Resizing Features:An implementa-
tion choice for evaluation on whole images turns out to have
a strong effect on the detection performance. We train each
classifier on single size images. In the case of applying them
on whole images, which contain humans of different sizes,
we have two options. One is to resize the images so that
our scanning window size becomes the same as the training
size. We refer to this option asresizing images. The other
option is to resize the features selected by the classifier while
maintaining their relative sizes to the scan window. We refer
to this option asresizing features. Resizing features is faster
since the preprocessing of the image,e.g. computing gradients
and integral histograms, is performed only once. We evaluated
on whole images using the two options to compare between
them.

C. Statistical Analysis

Statistical analysis of detection performance is rarely con-
ducted for human detection, possibly due to the long training
time. To our knowledge, the only study that provided statistical
analysis was [13], where a confidence interval for each point
on the ROC curve was computed based on 6 observations
(3 training sets× 2 testing sets). We found it confusing to
plot confidence intervals with the plots since in our evaluation
plots intersect and come close to one another. Instead, we
compute confidence intervals for the aggregate performance
score ALMR, which is explained in Section IV-D. We conduct
a 10-fold cross validation for all our experiments. Therefore,
for each experiment, we obtain 10 different curves. Each curve
yields an ALMR score. To compare different experiments, we
plot the average curve for each experiment. We also present
a box-plot for the mean, confidence interval, and range of
the ALMR scores for all experiments in a separate plot.
Confidence intervals are computed at the0.95 confidence level.

D. Computing an Aggregated Performance Score

To analyze the significance of one method’s advantage
over another, we need an aggregated score that captures

the difference between them over the entire curve. The log-
log plots emphasize the relative difference instead of the
absolute difference between two curves. We need a score that
emphasizes the same difference in order to be consistent with
the difference perceived from the plots. For two curvesa and
b, such a score can be expressed as

Rab =
1

n

n
∑

i=1

log
mra

i + ε

mrb
i + ε

, (6)

wheremr is a miss rate value,ε is a small regularization
constant, and the sum is over the points of the DET curve.
We use 10 as the logarithmic base andε = 10−4 in our
experiments. We found the value ofε not significant in
comparing curves. If this score is positive, it indicates that
curvea misses more on average, and vice versa.

Instead of having a score for each pair of curves, it is better
to have a score for each curve and compare the curves by
comparing the scores. The scoreR in 6 can be expressed as

Rab =
1

n

n
∑

i=1

log (mra
i + ε) −

1

n

n
∑

i=1

log (mrb
i + ε) . (7)

This suggests that we can represent the performance of
each curve as the average of the logarithm of the miss rate
values over the curve. But, this score will be always negative.
Therefore, we switch its sign to reach the following expression
for the ALMR (Average Log Miss Rate) score

ALMR =
−1

n

n
∑

i=1

log (mri + ε) . (8)

The higher the value of the ALMR score, the lower the miss
rate over the curve on average,i.e. the better. The ALMR score
is related to theR score in 6 and 7 by

Rab = ALMRb − ALMRa . (9)

The ALMR is related to the geometric mean of the miss
rate values. It is also proportional to the area under the curve
in the log-log domain when the curve is approximated using
a staircase plot. Since our plots are on a log-log scale and the
points are uniformly spaced, the ALMR score contains more
samples from the low false alarm rate values. This is useful
since in many applications we are more interested in the low
false alarm rate range.

Finally, in our evaluation, we call the difference between
the ALMR scores of two experimentssignificant when the
confidence intervals of the two experiments do not overlap.
Otherwise, we call the difference insignificant.

V. EVALUATION DATASETS

We evaluated the detectors on two different datasets, INRIA-
Person and MERL-NIR. The INRIA dataset was introduced
in [30], and subsequently used to evaluate many human
detectors. The MERL-NIR dataset consists of 46000 frames
from a video sequence. The video was shot from a vehicle
touring an Asian city, using a near infrared interlaced camera.
From the frames that contained annotated human subjects, we
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INRIA MERL-NIR

Electromagnetic Band Visible Near Infrared

Source of Images Personal Photos Interlaced Video Frames

Total Number of Im-
ages 2572 46000

Image Size Variable 720×480

Number of Images
Containing Humans 901 9823

Number of Human
Samples 1825 11895

Number of Tracks N/A 285

Min Person Height 48 20

Max Person Height 832 323

Mean of Person
Height 290 92.66

Standard Deviation of
Person Height 147.83 59.92

Median Person Height 260 72

Mode Person Height 208 50

TABLE I: A comparison between the two datasets used in
our evaluation. Tracks are defined only in the case of MERL-
NIR dataset. A track is a sequence of windows containing
the same person in consecutive frames. More than one track
can be associated with one person if she becomes partially or
totally occluded and then fully visible again.

INRIA MERL-NIR

Whole Cropped Whole Cropped

Positive

Set # 1 179 730 320 766
Set # 2 180 730 320 764
Set # 3 180 730 320 764
Set # 4 181 730 320 764
Set # 5 181 730 320 764

Negative Training 1218 800
Testing 453 300

TABLE II: Division of each dataset into 5 positive subsets
and two common negative sets for 10-fold cross validation
experiments.

uniformly sampled 1600 to be used as positive images. From
the remaining frames, we randomly sampled 1100 to be used
as negative images. The description of the two datasets along
with statistics and histograms of human sizes are given in Ta-
ble I and Figure 4. Sample whole images and cropped human
windows used in training and testing are shown in Figure 5
and Figure 6. To conduct cross validation experiments, we
divided the whole positive images in each dataset into 5 sets
of a roughly equal number of annotated human subjects. We
perform 10-fold cross validation by using 3 sets for training
and 2 for testing in each fold. Negative images used in training
and testing are common in all experiments. Table II describes
the contents of each set and the number of negative images in
the two dataset. The number of cropped windows in the table
includes the left-right reflection of each window.
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Fig. 4: Distribution of human height in pixels in the two
datasets used in our evaluation.

Fig. 5: Sample whole and cropped human images from the
INRIA-Person dataset.

VI. EVALUATION RESULTS

We train the cascade classifiers to have 30 cascade layers.
Each layer is trained using the LogitBoost algorithm [27],
and adjusted to produce99.8% detection rate and65% false
alarm rate, using the algorithm in [26]. The number of positive
samples in each training session can be inferred from table II
by noting that we use three positive sets for training and the
remaining two for testing in a 10-fold cross validation setup.
The number of negative samples collected for each layer is
set to3.5 times the number of positive samples. Features are
generated with the minimum side length set to12.5% of the
corresponding window side length, with a minimum of 8 pixels
in order to have enough sample points to construct histograms

Fig. 6: Sample whole and cropped human images from the
MERL-NIR dataset.
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Fig. 7: DET-Score plots for the INRIA dataset with window
size128 × 64.

and covariance matrices. The feature location stride and side
length increment are set to half the minimum feature side
length. Every 5 boosting iterations, 5% of the features are
randomly sampled, with a maximum of 200. The limit on
the number of sampled features is for all descriptors to fit
in memory instead of being re-computed on every boosting
iteration.

For evaluation on whole images, each image is scanned with
9 window heights, starting from 75% of the training window
height and using an increment of 30% of the last height used,
while preserving the aspect ratio of the training window size.
The scanning stride is set to 5% of the scanning window size
in each dimension.

Our training and testing modules were run on a cluster of
computers, with about 60 active nodes. Each node contained
two Intel(R) Xeon(TM) CPU 3.06GHz processors with 512KB
cache memory and 4GB RAM. The front end and compute OS
was CentOS release4.5.

In the remainder of this section, we first present the evalua-
tion results on the INRIA dataset with the default training and
testing window size of128× 64. Then, we present the results
on the MERL-NIR dataset, in which we use a window size of
48× 24. Alongside with this set of results, we present results
for the INRIA dataset with window size48× 24 for the sake
of comparison with the results on the MERL-NIR dataset. We
present all the plots using the same limits in both axes for
ease of comparison. In each plot, curves for the COV detector
are drawn using dotted lines and curves for the HOG detector
are drawn using dashed lines, with a different marker shape
for each type of experiment. The legend of each experiment
has two parts. The first is the descriptor, HOG or COV. The
second is the evaluation method, which is either Cropped,
Whole-RI, or Whole-RF, for cropped windows, whole images
with resizing images, and whole images with resizing features,
respectively.

A. Evaluation on INRIA128 × 64

In this set of experiments, we evaluate our two detectors on
the INRIA dataset using the original window size of128×64,
where each positive window is adjusted so that the height of
the human body in it is 96 pixels.

0.6 0.8 1 1.2 1.4 1.6 1.8

HOG − Cropped

COV − Cropped

HOG − Whole−RI

COV − Whole−RI

HOG − Whole−RF

COV − Whole−RF

Score Values

ALMR − INRIA 128x64

Fig. 8: A box plot for the mean, confidence interval, and range
of the ALMR score for the plots in figure 7.

Figure 7 shows the DET score plots for this set of exper-
iments. Each curve is the average of the 10 curves produced
by cross validation. However, the curves often intersect one
another and there is no clear winner. Therefore, we will rely
on the ALMR score statistics to compare experiments when it
is hard to reach a conclusion by inspecting the curves.

Figure 8 shows the statistics of the ALMR score for each
curve in figure 7. Note how comparing the mean values of the
ALMR scores of two curves matches well with how the curves
themselves compare to one another on average. The difference
between the mean scores of two curves reflects the average
relative advantage of one curve over the other in terms of
miss rate. For example, the mean ALMR scores for the HOG-
Cropped and COV-Cropped experiments are approximately1.6
and 1.4, respectively. This means, on average, the miss rate
of the HOG detector is100.2 ' 1.6 times the miss rate of
the COV detector, which is consistent with how the curves
compare to one another.

For evaluation on cropped windows, the ALMR score shows
the significant advantage of the COV detector on average.
The confidence intervals of the two scores do not overlap. On
average COV leads by around0.2 points. Note how the ranges
of the ALMR scores are large to the extent that they overlap.
This signifies the importance of using statistical analysisin
order to have a reliable estimator for a detector’s performance.

For evaluation on whole images, the COV detector main-
tains its lead over the HOG detector. The lead this time is
even more evident since the ranges of the ALMR scores do
not overlap. On average COV leads by around0.2 points.
However, the performance of the two detectors significantly
deteriorates in this case by losing around0.3 points on
the ALMR scale on average. This deterioration signifies the
importance of evaluation on whole images in order to predict
the detector’s performance in a typical practical setting.

Finally, for evaluation on whole images with resizing fea-
tures, the picture is totally different. Without even inspecting
the ALMR score statistics, we can notice that the HOG detec-
tor consistently outperforms the COV detector. By inspecting
the ALMR scores, we notice that this difference is significant.
On average HOG outperforms COV by around2.5 points. The
difference between the two detectors’ behavior in this case
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Fig. 9: DET-Score plots for the MERL-NIR dataset.

may be due to the difference between the two descriptors,
or due to the usage of learning on Riemannian manifolds in
the case of COV. Further investigation is needed to understand
this phenomenon. On the other hand, comparing evaluation on
whole images for the HOG detector with resizing images and
with resizing features, we find the difference between them
insignificant. The mean score of each experiment lies in the
confidence interval of the other. This gives the HOG detector
a higher advantage over COV in terms of processing time.
The COV detector is at least 10 times slower than the HOG
detector. Resizing features saves about 40% of the processing
time of the HOG detector without a significant loss in detection
performance. This makes the COV detector at least about 17
times slower than the HOG detector when resizing features is
used for the latter.

Despite the advantage of the COV detector in most of the
experiments on average, it is worth noting that the HOG
detector often slightly outperforms the COV detector in the
very low false alarm rate range, below around10−4. However,
the points in this range of false alarm rates are often found only
in the score-based plots and missing from the layer-based plots
(compare figure 7 to figure 3). This may indicate the possibility
of obtaining a more consistent advantage for the COV detector
if we continue training more cascade layers to cover the entire
range of false alarm rate. However, this is difficult in practice.
It takes about 4 days to train a COV classifier for 30 layers.
The bottleneck of the training process is finding enough miss
classified negative samples for each new layer to be trained,
and this time increases with the number of layers.

B. Evaluation on MERL-NIR

In this set of experiments, we evaluate our two detectors
on the MERL-NIR dataset. Due to the smaller person heights
in this dataset compared to the INRIA dataset, as shown in
figure 4, we have to use the reduced window size of48 × 24
in this set of experiments. All positive windows are adjusted
so that the height of the human body is 36 pixels. Because
of this reduction in window size, we expect reduced detection
performance.

Figures 9 and 10 show the DET plots and ALMR score
statistics for this set of experiments. Similar to the results
on the INRIA 128 × 64 dataset, the COV detector’s lead
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Fig. 10: A box plot for the mean, confidence interval, min,
and max of the ALMR score for the plots in figure 9.
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Fig. 11: DET-Score plots for the INRIA dataset with window
size48 × 24.

over the HOG detector in the case of cropped windows and
whole images with resizing images, and the HOG detector’s
lead in the case of whole images with resizing features are
significant. However, there are several differences between the
two sets of results. The first notable difference is the improved
performance for both detectors in the case of resizing features
with respect to the other types of evaluation. In the case of
HOG, using resizing features became even better than resizing
images. The second notable difference is that the advantage
of evaluation on cropped windows over evaluation on whole
images with resizing images is no longer significant, with
overlapping confidence intervals of the ALMR scores, and is
reversed in the case of the HOG detector.

Before attempting to explain these differences, we present
another set of results on the INRIA dataset, but, with the
window size reduced to match the one used with MERL-NIR.
In this set of experiments, all the INRIA dataset images used
in training and testing are reduced in size with the same factor
that reduces the window size of128×64 to 48×24. Figures 11
and 12 show the results of this set of experiments. Comparing
this set of results with those obtained on the MERL-NIR
dataset, by comparing Figure 12 to Figure 10, we find that
they are very similar. Most of the differences between them
are either small or statistically insignificant. This observation
gives us a clue about the differences between the results on the
INRIA 128×64 dataset and those on the MERL-NIR dataset.
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Fig. 12: A box plot for the mean, confidence interval, min,
and max of the ALMR score for the plots in figure 11.

It tells us that the difference is mostly due to the window size.
The reduced window size leads to a reduced stride when

scanning whole images for evaluation since we set the stride
to be 5% of the window side length. That makes the stride
just 1 or 2 pixels in each dimension for a48 × 24 window.
Also, using a reduced minimum scanning size results in a
reduced scanning size range and hence a denser coverage
of that range. These two factors could explain the reduction
in the performance gap between the evaluation on cropped
windows and evaluation on whole images. With reduced
window sizes and window size range, there is a higher chance
that the scanning window becomes close to annotated human
subjects while having them centered. Also, with a smaller
range of scanning window sizes, the effect of resizing fea-
tures compared to resizing images should be less significant.
Nevertheless, the enhanced performance of resizing features
compared to resizing images in the case of HOG needs further
investigation.

Finally, by comparing the ALMR scores in the case of
evaluation on cropped images when using a large scan win-
dow size, Figure 8, versus using a small scan window size,
Figures 10 and 12, we observe that the performance on small
window sizes is significantly worse. Note that evaluation on
cropped windows actually evaluates the classifier, not how
it is used in the detection task. A classifier trained on a
large window size has a richer set of features to select from.
Therefore, it is expected to perform better, as the results show.

VII. C ONCLUSION

We presented a comprehensive evaluation framework for
object detectors that is geared towards a typical practical
deployment paradigm. We demonstrated its utility on two
state of the art human detection algorithms, that are based
on cascade classifiers, on two different datasets, covering
two bands of the electromagnetic spectrum, visible and near
infrared. In our evaluation we compare between the typically-
used evaluation on cropped windows and the more practical
evaluation on whole images. We introduced enhanced DET
plot generation based on confidence scores instead of varying
the number of layers in cascade classifiers. We introduced an
aggregate performance score to summarize such plots for ease

of comparison. We used 10-fold cross validation to statistically
analyze our results.

Our experiments showed the effectiveness of our framework
and led to the following findings:

• The COV detector maintains a significant lead over the
HOG detector on average. However, sometimes it is very
close or slightly inferior in the very low false alarm rate
range, and it is at least 17 times slower.

• Application of detectors on whole images can yield a
significant reduction in detection performance than what
can be observed upon evaluation on cropped windows.
However, when the application deploys a dense scanning
in terms of strides and window sizes, the difference
between them may not be significant.

• Detection performance may not be significantly affected
by applying the same algorithm to images in the near
infrared band instead of the visible band. However, it is
significantly affected by the window size used in training
the classifiers.

• Whether to use resizing images, or resizing features,
when applying a detector to whole images, can have a
significant effect on the detection performance depending
on the detector used. While the HOG detector can deliver
the same or better performance when resizing features,
the COV detector delivers significantly deteriorated per-
formance.

Many directions can be taken for future extensions and en-
hancements of our framework. It is not clear how the extended
plots we obtain for cascade classifiers using confidence scores
are comparable to plots obtained by increasing the number
of layers in the cascades. The ALMR aggregate confidence
score gives an overall performance measure assuming that
performance over the entire range of the false alarm rate is
important. An investigation of using a weighted or limited-
range version of the score for some applications can be useful.
Comparison to PR curves and what we learn from both DET
and PR curves on evaluation on whole images needs to be
further studied. Finally, the framework in general needs tobe
applied to other state of the art detectors, especially onesthat
do not rely on cascade classifiers.
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